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Abstract. 1

In this paper, we present a market model for credit derivatives, built under a standard risk-neutral
probability. This is achieved through the introduction of a new class of processes, the Default
Accumulator Process, which allows to fill the information gap between forward credit default swap
and default time. The simulation framework is detailed in order to assert the tractability of the
approach.

1. Introduction.

The market of credit derivatives is fast-expanding, and is on the way to achieve liquidity, almost partly,
for its primary instruments, the credit default swaps. They now constitute the reference as hedging
products, for the exotic derivatives that have been expanding at the same time. The quotations of credit
default swap options starts to bring in information about the volatility and the dynamics of the CDS
spreads. In some respect, the credit default swap curve appears as the natural underlying for the credit
market, and calls for a corresponding coherent modelling.

The credit modelling is classically divided in two main types of approaches. The first class of models,
called structural models, pioneered by Black and Scholes (1973) and Merton (1977) uses the firm value
as fundamental variable. The default occurs when the firm value hits a trigger, representing to some
extent the value of the outstanding debt. Many developments were then done within this framework,
introducing stochastic triggers, or jump diffusions for the latent variable. However, the general principle
remains unchanged.

Reduced form models represents the usual alternative. Within this approach, the default intensity
process is the fundamental variable, and a canonical construction, presented in [1] for example, allows to
build the default time. Various models of this type include [5], [16], [6], [3] and [4]. In comparison with
interest rates modelling, they play a similar role than short rate models. Even if the credit equivalent
HJM framework has been developped (see [5] and [16]), the positivity condition on the default intensity
makes it less tractable than the initial setup developed for interest rates.

The common feature of both modelling approaches with regards to market practices is that the CDS
spread is obtained only through the pricing of its given pay-off.

The first attempt to build a modelling framework focused on the CDS spread is due to Schönbucher
(2000) in [15], then followed by Jamshidian [10] and Hull and White [9]. As the forward CDS spread
represents the fundamental variable, this approach is very close to a market model. However, all con-
structions are made under a specific probability measure, under which the default event has probability
zero. This restricts strongly the field of applications, and only specific single-names products can be
priced.

The modelling framework we develop in this paper constitutes a market model for credit derivatives. Us-
ing forward CDS spreads as fundamental variables, it is built under a standard risk-neutral probability,
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thus allowing for extensions to multi-names or hybrid products. This is achieved mainly by the intro-
duction of a new class of processes, the Default Accumulator Process, that brings the complementary
information to build default information.

Then, the natural credit underlying is directly modelled, which is consistent with the observed market
practice. The risk-neutral approach allows to speak of an Extended Market Models, making an explicit
reference to previous approaches, built under specific probability measures.

The paper is organized as follows: in the first section, we introduce the main notations, and review
some standard results relative to market models. Then, the ECMM specific framework is presented,
with a particular focus on the introduced Default Accumulator Process. This section presents the main
properties of this class of process, and several useful results are presented. To demonstrate the tractabil-
ity of the approach, we then enter the field of simulation. Specific issues and corresponding solutions are
presented and illustrated with numerical results. This is followed by the description of pricing algorithm,
in relation with the most current credit products.

2. Notations and Model Setup.

In this part, we give the basic notations which are used throughout the document and we expose the
framework in which the model is set. The results enounced here (as well as their proofs) can be found
in Schönbucher(2000).

In what follows, we assume we are given a filtered probability space
(
Ω, (Ft)t≥0,Q

)
where Q stands

for the risk-neutral probability. The quantities which are subject to default risk are denoted with an
overbar.

τ represents the default time and we denote by I(t) the associated survival indicator function:

I(t) := 1{τ>t}.

We define the filtration H by Ht := σ ({τ ≤ s}, s ≤ t) and if W is a Q-Brownian motion, we introduce
the filtration FW defined by

FW
t := σ (Ws, s ≤ t)

We also set F := FW ∨H.

2.1. Bond Prices, Interest Rates and Default Time.

2.1.1. Definitions. We consider payoffs that occur on a discrete set of dates 0 = T0 < T1 < . . . < TN .
We set δk = Tk+1 − Tk and κ(t) = min {k |Tk ≥ t}.

In the rest of the paper we use the standard notations:

• rt: default-free short interest rate.

• bt: continuously compounded savings account: bt = e
∫ t
0 rudu

• βt: continuously compounded discount factor: βt = 1/bt.

• B(t, T ): price at time t of a default-free zero-coupon bond with maturity T . If t = Tk, we note
B(t, Tk) = Bk(t).

• I(t)B(t; T ): price at time t of a defaultable zero-coupon bond with maturity T (B(t, T ) stands for
the pre-default price of the bond). Again, we note B(t, Tk) = Bk(t).
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The default-risk factor at time t for maturity T is defined by

D(t, T ) =
B(t, T )
B(t, T )

and we note Dk(t) = D(t, Tk).

The different forward rates we use throughout this paper are:

• default-free Libor forward rate at time t for the period [Tk, Tk+1]:

Lk(t) =
1
δk

(
Bk(t)

Bk+1(t)
− 1

)

• defaultable Libor forward rate over [Tk, Tk+1]:

Lk(t) =
1
δk

(
Bk(t)

Bk+1(t)
− 1

)

• linear forward default intensity over [Tk, Tk+1]

Hk(t) =
1
δk

(
Dk(t)

Dk+1(t)
− 1

)

• forward credit spread over [Tk, Tk+1]

Sk(t) = Lk(t)− Lk(t)

We also introduce the forward defaultable BPV (Basis Point Value) for the period [TK , TN ] :

BPVTK ,TN
(t) :=

N−1∑

k=K

δkBk+1(t), for t ≤ TK

Finally, defining the process D as Dt = 1{τ≤t}, the intensity of τ is the nonnegative adapted process λ
such that

Mt := Dt −
∫ t∧τ

0

λudu

is a martingale. In this framework, the survival probability up to time t is given by

P[τ > t] = E
[
e−

∫ t
0 λudu

]

2.1.2. Useful Relationships. These relations directly stem from the definitions above:

• Sk(t) = Hk(t)[1 + δkLk(t)] for t ≤ Tk

• Bq(t) = Bp(t)
q−1∏

k=p

(1 + δkLk(t))−1 for 0 ≤ p < q ≤ N and t ≤ Tp.

In particular,

Bq(Tp) =
q−1∏

k=p

(1 + δkLk(Tp))
−1
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• Dq(t) = Dp(t)
∏q−1

k=p (1 + δkHk(t))−1 for 0 ≤ p < q ≤ N and t ≤ Tp.
If t = Tp, we have

Bq(Tp) = Bq(Tp)
q−1∏

k=p

(1 + δkHk(Tp))
−1

• δkHk(t)Bk+1(t) = Bk(t)
Bk+1(t)
Bk(t)

−Bk+1(t) if t ≤ Tk.

• σH
k = σS

k −
δkLk

1 + δkLk
σL

k

• LkσL
k = σL

k Lk + σS
k Sk = (1 + δkLk)HkσH

k + (1 + δkHk)LkσL
k

2.1.3. Zero-coupon Bonds Dynamics. In the HJM framework, the absence of arbitrage ensures that
the default-free and defaultable forward rates follow the dynamics :





df(t, T ) = σf (t, T )
(∫ T

t
σf (t, s)ds

)
dt + σf (t, T )dWQ

t

df(t, T ) = σf (t, T )
(∫ T

t
σf (t, s)ds

)
dt + σf (t, T )dWQ

t

f(t, t) = λ(t) + f(t, t).

and thus, the dynamics of the zero-coupon bonds are:




dB(t, T )
B(t, T )

= rtdt− α(t, T )dWQ
t

dB(t, T )
B(t, T )

= (rt + λt)dt− α(t, T )dWQ
t

where α(t, T ) =
∫ T

t
σf (t, s)ds and α(t, T ) =

∫ T

t
σf (t, s)ds.

2.2. Changes of Probabilities.

2.2.1. Forward Measures. Given a time T , the numeraire associated with the T -forward probability
QT is the default-free zero-coupon bond B(., T ). In the discrete tenor case, we denote by Qk the Tk-
forward probability.

The Radon-Nikodym density of the change of probability between Q and QT is given by

dQT

dQ

∣∣∣∣
Ft

=
β(t)B(t, T )

B(0, T )

and since
B(t, T )
B(0, T )

= exp
[∫ t

0

(r(s)− 1
2

α2(s, T )) ds−
∫ t

0

α(s, T ) dWQ
s

]

we have

dQT

dQ

∣∣∣∣
Ft

= exp
[
−1

2

∫ t

0

α2(s, T ) ds−
∫ t

0

α(s, T ) dWQ
s

]

and Girsanov’s theorem ensures that WQT

, defined by dWQT

t = dWQ
t + α(t, T )dt is a QT -Brownian

motion.

The change from Qk to Qk+1 is given by:

dQk

dQk+1

∣∣∣∣
Ft

=
Bk(t)/Bk+1(t)
Bk(0)/Bk+1(0)

=
1 + δkLk(t)
1 + δkLk(0)
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Proposition 2.1. The change of drift to reach Qk+1 from Qk is obtained through the relation:

dWQk

t = dWQk+1

t − δkLk(t)
1 + δkLk(t)

σL
k dt

Proof. We define

ρ(t) =
dQk

dQk+1

∣∣∣∣
Ft

=
1 + δkLk(t)
1 + δkLk(0)

.

Since δkLk = (Bk −Bk+1)/Bk+1, Lk is a Qk+1-martingale. Thus the dynamics of Lk under Qk+1 is

dLk

Lk
= σL

k dWQk+1
.

Then
dρ(t)
ρ(t)

=
δkdLk(t)

1 + δkLk(t)
=

δkLk(t)σL
k

1 + δkLk(t)
dWQk+1

t

which yields the announced change of drift.

As a corollary, we have the recurrence relationship:

αk+1(t) = αk(t) +
δkLk(t)

1 + δkLk(t)
σL

k , 0 ≤ t ≤ Tk (1)

The following result, taken from [15], allows to interpret Dk(t) as a survival probability:

Proposition 2.2. We have I(t)Dk(t) = Qk[τ > Tk|Ft]

Proof. I(t)Dk(t) is a Qk-martingale since it is equal to the price of an asset (I(t)Bk(t)) divided by
Bk(t). Thus

I(t)Dk(t) = EQ
k

[I(Tk)Dk(Tk)|Ft] = EQ
k

[I(Tk)|Ft] = Qk[τ > Tk|Ft]

2.2.2. Survival Measures. The numeraire associated with the T -survival probability QT
is the de-

faultable zero-coupon bond with maturity T . When T = Tk, we use the notation Qk
= QTk .

The Radon-Nikodym density of the change of probability between Q and QT
is given by

dQT

dQ

∣∣∣∣∣
Ft

=
β(t)I(t)B(t, T )

B(0, T )

and the change of drift is given by dWQT

t = dWQ
t + α(t, T )dt.

The T -survival measure satisfies QT
[τ ≤ T ] = 0 which justifies the name ”survival probability” and

proves that QT is not equivalent to Q. Nevertheless, QT is absolutely continuous with respect to Q,
which ensures that Girsanov’s theorem can still be applied.

The Radon-Nikodym density process for the change from Qk
to Qk+1

is:

dQk

dQk+1

∣∣∣∣∣
Ft

=
Bk(t)/Bk+1(t)
Bk(0)/Bk+1(0)

=
1 + δkLk(t)
1 + δkLk(0)

so that the drift change is obtained through the recurrence relationship:

αk+1(t) = αk(t) +
δkLk(t)

1 + δkLk(t)
σL

k , 0 ≤ t ≤ Tk (2)
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Now, defining αD(t, T ) as minus the volatility of the process D(t, T ), we have αD(t, T ) = α(t, T )−α(t, T ),
which leads to the recurrence relationship:

αD
k+1(t) = αD

k (t) +
δkHk(t)

1 + δkHk(t)
σH

k , 0 ≤ t ≤ Tk (3)

Using αD, we can specify the Radon-Nikodym density for the change from QT to QT
:

dQT

dQT

∣∣∣∣∣
Ft

=
I(t)D(t, T )

D(0, T )
and dWQT

t = dWQT

t + αD(t, T )dt

2.3. Dynamics of Sk and Hk under Qk+1
.

The definitions of the forward rate Lk and Lk show that they are martingales respectively under Qk+1

and Qk+1
. If we assume that these rates have lognormal dynamics, we have:

dLk(t)
Lk(t)

= σL
k .dWQk+1

t and
dLk(t)
Lk(t)

= σL
k .dWQk+1

t

for some constant vectors σL
k and σL

k .

By definition, Sk = Lk − Lk. Consequently,

dSk(t) = Lk(t)σL
k αD

k+1(t)dt + Sk(t)σS
k dWQk+1

t

Then, differentiating the equality Hk = Sk/(1 + δkLk) yields

dHk(t) =
Lk(t)σL

k

1 + δkLk(t)
[
(1 + δkHk(t))αD

k+1 − δkHk(t)σH
k

]
dt + Hk(t)σH

k dWQk+1

t (4)

2.4. Independence Hypothesis.

From now on, the ”independence” between default-free interest rates and credit will be defined as
the independence (in the mathematical sense) between the random variables Hi and Lj for all i, j ≤ N ,
under the risk-neutral probability. We thus have the characterization

∀i, j ≤ N, σL
i .σH

j = 0

As a corollary, we have
∀i, j ≤ N, αD

i .σL
j = 0

Then, the dynamics of Sk and Hk under Qk+1
become:

dSk(t)
Sk(t)

= σS
k .dWQk+1

t (5)

and
dHk(t)
Hk(t)

= σH
k .dWQk+1

t . (6)
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3. Extended Credit Market Model.

In this section, we present in details the extension of the market model introduced previously. The
main issue is to transfer this mono-issuer framework under a non credit-specific probability, which will
allow for extensions to multi-issuer or to hybrid products.

Moving into a standard risk-neutral or forward measure raises several issues. The first one is to build
the default time information. To achieve this, we introduce a new class of fundamental variables: the
Default Accumulator Process. These new variables are strongly linked to both default time and forward
CDS spread. The second one is to compute the drift term in the diffusion of forward CDS spread,
resulting from the change of probability measure. This aspect will be treated further in the next section.

3.1. Default Accumulator Process.

Definition 3.1. Default Accumulator Process
We define the Default Accumulator Process of maturity T as the process (ε (t, T ))t>0 given, under

the probability QT , by :




ε (t, T ) = ε (0, T ) exp
(
−1

2

∫ t

0

αD (s, T )2 ds−
∫ t

0

αD (s, T ) dWQT

s

)

ε (0, T ) = D (0, T )
(7)

The introduction of the Default Accumulator Process becomes quite natural when considering the change
of probability measure from QT to QT

, as defined in the previous section (see 2.2.2). Then :

dQT

dQT

∣∣∣∣∣
FW

t

= exp
(
−

∫ t

0

λsds

)
B (t, T )
B (0, T )

B (0, T )
B (t, T )

=
ε (t, T )
ε (0, T )

which shows that ε (t, T ) plays the role of a default tracker, allowing to switch to a probability measure
under which the event of default has probability zero. The term structure (ε (t, T ))T>0 will allow to get
information on the default event and the default time, directly from variables naturally introduced by
the market model approach, and under a non-credit specific probability.

Remark 3.2. In the particular case of zero interest rates, the Default Accumulator Process becomes:

ε (t, T ) = exp
(
−

∫ t

0

λsds

)
B (t, T )
B (0, T )

= EQ
[

exp

(
−

∫ T

0

λsds

)∣∣∣∣∣F
W
t

]

which is a Q-martingale. The DAP is then the conditional expectation of the hazard process Γt, and
appears as its term structure extension. In particular, the value at time T becomes:

ε (T, T ) = exp (−ΓT )

where Γt =
∫ t

0
λsds. This is thus the natural process to focus on in order to get the default time infor-

mation.

We now turn to the main properties of the Default Accumulator Process.
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Lemma 3.3. SDE under Spot and Forward Neutral Probabilities
Under the forward measure QT , the Default Accumulator Process follows the SDE given by :





dε (t, T )
ε (t, T )

= −αD (t, T ) dWQT

t

ε (0, T ) = D (0, T )
(8)

Under the risk-neutral measure Q, it follows :




dε (t, T )
ε (t, T )

= αD (t, T )α (t, T ) dt− αD (t, T ) dWQ
t

ε (0, T ) = D (0, T )
(9)

Proof. Equation (8) is simply a rewriting of definition (7) in terms of SDE. The second equation is
obtained by applying the classical change of probability measure, from the T -forward measure to the
risk-neutral measure.

Lemma 3.4. Martingale Property
The Default Process ε (t, T ) is a QT -martingale. Furthermore, under the assumption of independence

between credit and interest rates, it is a martingale under Q.

Proof. Direct from equations (7) and (9).

From equation (7), we see that the Default Accumulator Process is the exponential martingale of the
volatility process of D (t, T ). Considering the SDE defined in the first section, we find that :

ε (t, T )
D (t, T )

= exp
(
−

∫ t

0

λsds

)
(10)

and in particular, taking t = T leads again to:

ε (T, T ) = exp

(
−

∫ T

0

λsds

)
(11)

Lemma 3.5. Decreasing Term Structure

∀ k > j, ∀ t ∈ [0, Tj ] , εk (t) < εj (t)

Proof. Starting from (10)
εk (t)
Dk (t)

=
εj (t)
Dj (t)

= exp
(
−

∫ t

0

λsds

)

we have:
εk (t)
εj (t)

=
Dk (t)
Dj (t)

=
k−1∏

i=j

(1 + δiHi (t))

and the quantity on the right is always positive as Hi is defined as a non-negative process.

The next lemma is a reformulation with the DAP of a classical result. This will show that this process
can play a role very close to that played by a numeraire.

Lemma 3.6. Pricing Rule
For any Ti < Tk, and any process X being FW

Tk
-measurable, we have :

V (Ti) = EQ
[
I (Tk) exp

(
−

∫ Tk

Ti

rsds

)
X |FTi

]

= I (Ti) εi (Ti)
−1 EQ

[
εk (Tk) exp

(
−

∫ Tk

Ti

rsds

)
X

∣∣FW
Ti

]
(12)
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Proof. Following [1] for example, we have :

V (Ti) = EQ
[
I (Tk) exp

(
−

∫ Tk

Ti

rsds

)
X |FTi

]

= I (Ti)EQ
[
exp

(
−

∫ Tk

Ti

λsds

)
exp

(
−

∫ Tk

Ti

rsds

)
X

∣∣FW
Ti

]

Using the terminal condition (11) :

V (Ti) = I (Ti)EQ
[

εk (Tk)
εi (Ti)

exp

(
−

∫ Tk

Ti

rsds

)
X

∣∣FW
Ti

]

and the fact that εi (Ti) is FW
Ti

-measurable completes the proof.

The properties detailed above will be very useful all along the development of the ECMM, i.e. for its
simulation, and for the pricing of credit derivatives within this framework. The next sections will then
make an intensive use of these results.

Before turning to simulation and pricing issues, we will make a rewriting of all useful quantities in
terms of the Default Accumulator Process, starting with the linear default intensity. For the sake of
simplicity, all processes are implicitly taken at time t.

From (10), we recall that, for any k = 0, . . . , N − 1 and t ≤ Tk :

εk

εk+1
=

Dk

Dk+1

, 1 + δkHk

Then, the linear default intensity has a similar expression with the DAP, as with the Default Factor
Process Dk:

Hk =
1
δk

(
εk

εk+1
− 1

)

Seemingly, the defaultable zero coupon bond is given by:

Bk+1

Bk

=
Bk+1

Bk

εk+1

εk

so that, for t ≤ Tl and t ≤ Tk :
Bk

Bl

=
Bk

Bl

εk

εl
(13)

We now turn to the forward CDS spread over the period [TK , TN ] , under the hypothesis of independence
between default and interest rates. Starting from :




N−1∑

j=K

δjBj+1


 sTK,TN

=
N−1∑

k=K

δkBk+1Hk

we have, with (13) and using a fixed k0, such that t ≤ Tk0 :

Bk0

Bk0εk0




N−1∑

j=K

δjεj+1Bj+1


 sTK,TN =

Bk0

Bk0εk0

N−1∑

k=K

εk+1Bk+1

(
εk

εk+1
− 1

)

which leads to: 


N−1∑

j=K

δjεj+1Bj+1


 sTK,TN

(t) =
N−1∑

k=K

Bk+1 (t) (εk − εk+1)
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N−1∑

j=K

δjεj+1Bj+1


 sTK,TN

= εKBK+1 − εNBN (14)

+
N−2∑

k=K

εk+1 (Bk+2 −Bk+1)

which gives the forward spread for period [TK , TN ] directly from the (εk)k=1,...,N .

3.2. Change of Numeraire.

One of the challenges of the definition of the ECMM is to build a coherent, arbitrage free, construction
of the drifts terms in the diffusion of the credit spreads under some standard neutral probability. To
achieve this, we start by giving more precisely the different changes of probability measure, written in
terms of Default Accumulator Process.

Lemma 3.7. From Forward Survival to Forward Neutral Measure
The change of probability, from Qj to Qk

, for any k and j, is given in terms of Default Accumulator
Process, as:

dQk

dQj

∣∣∣∣∣
FW

t

= exp
(
−

∫ t

0

λsds

)
Bk(t)
Bk(0)

Bj(0)
Bj (t)

(15)

= εk(t)
Bk(t)
Bk(0)

Bj(0)
Bj (t)

(16)

In particular, for j = k:
dQk

dQk

∣∣∣∣∣
FW

t

=
εk (t)
εk (0)

This change of probability measure is valid only for FW
t -measurable process. It is interesting to note

that in this case, the change of probability is standard, giving two equivalent probability measures (see
[15] for more details).

Lemma 3.8. From Forward Defaultable BPV to Forward Neutral Measure
The change of probability, from Qj to QK,N

, for any j, K and N , is given in terms of Default
Accumulator Process, as:

dQK,N

dQj

∣∣∣∣∣
FW

t

= exp
(
−

∫ t

0

λsds

)
BPVTK ,TN (t)
BPVTK ,TN (0)

Bj (t)
Bj (0)

(17)

=
∑N

k=K δkBk+1 (t) εk+1 (t)∑N
k=K δkBk+1 (0) εk+1 (0)

Bj (0)
Bj (t)

Proof. Using (13), we find:
BPVTK ,TN

(t)
BN (t)

=
N∑

k=K

δkBk+1 (t) εk (t)

Rewriting (17) leads to:

dQK,N

dQj

∣∣∣∣∣
FW

t

= LK,N
j (t)

=
BPVTK ,TN

(t)
BPVTK ,TN

(0)
BN (t)
BN (0)

× exp
(
−

∫ t

0

λsds

)
Bj (0)
Bj (t)

BN (t)
BN (0)
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where the left term is similar to the change of probability defined in (15). Then,

LK,N
j (t) =

∑N
k=K δkBk+1 (t) εk (t)∑N
k=K δkBk+1 (0) εk (0)

× BN (0) εN (0)
BN (t) εN (t)

× Bj (0) BN (t)
Bj (t) BN (0)

× εN (t)

=
∑N

k=K δkBk+1 (t) εk (t)∑N
k=K δkBk+1 (0) εk (0)

Bj (0)
Bj (0)

DN (0)

using the fact that εN (0) = DN (0).

3.3. Default Time Definition.

The Default Accumulator Process is now precisely defined, and has been linked to the major quan-
tities introduced for the market model. An interesting property is that, under a well chosen class of
probability measures, it represents a family of processes easy to simulate, as being martingales, from
which all credit quantities can be recalculated. In some respect, it plays a similar role as the defaultable
zero-coupon bond.

However, its most interesting property is that it allows to get the default information. The purpose
of this section is to detail the link between the DAP ε and the default time τ . In particular, we will
show that the classical definition of τ can be rewritten using the DAP, which implies that the default
information is not altered. Then, we introduce another definition for the default time, more coherent
with the discrete time framework of the model.

The default time τ is defined classically under Q as:

τ = inf
{

t > 0 / exp
(
−

∫ t

0

λsds

)
< U

}

where U ∼ U([0, 1]) and is independent of FW . Taking directly (11), the definition becomes :

τ = inf {t > 0 / ε (t, t) < U}
or equivalently, for arbitrarily fixed T :

τ = inf
{

t > 0 /
ε (t, T )
D (t, T )

< U

}
(18)

Definition (18) shows that the default time remains unchanged, i.e. that the use of the DAP is only a
rewriting, and not a modification of this random variable. As the ECMM framework is set on a discrete
schedule, it may however be interesting to introduce another random variable, denoted by τ̂ , that would
be coherent with this specification.

Definition 3.9. Default Time Definition
Given a model schedule (Tk)k=0,...,N , we define the related default time as

τ̂ = inf {Tk / εk (Tk) < U} (19)

where U ∼ U ([0, 1]) and is independent of FW .

The default time τ̂ can be seen as a restriction of τ on the schedule (Tk)k=0,...,N . Note that the property
of decreasing term structure guarantees the consistency of this definition.

This completes the general setting of the ECMM, as it introduces a coherent way to compute the default
time. Then, according to the previous mechanism, the ECMM is fully specified, under any standard
risk-neutral probability, by a class of forward credit spreads and corresponding diffusions.
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4. Calibration and Simulation.

The Extended Credit Market Model is fully defined by the joint specification of the diffusion of a
well chosen family of forward credit spreads, and by the definition of default time. In this part, we will
enter the field of simulation, with a particular focus on default time simulation.

In fact, this represents the main difference between a Credit Market Model and a standard Libor
Market Model. It is also a key point in the model, as it is what will allow for an extension to multi-issuers
products, for which the pay-offs must be computed directly from default time simulation.

Another remarkable difference, yet easier to deal with, is the fact that the forward spreads diffusions
are given under a probability measure that is not natural. This problematic is not specific to credit
modelling, as the same issue would arise when considering a LMM under the risk-neutral measure Q.
In practice however, the LMM simulation is done under some appropriate forward measure, and a spot
martingale measure can also be introduced (cf. [14]). As the credit equivalent probabilities are issuer
specific, the same methods cannot be applied in this framework. This means that specific path-dependent
drift terms will appear in the diffusion of the forward credit spreads.

This section is composed as follows. We start with the computation of the diffusion of forward credit
spreads, under a the forward-neutral probability QTN . Then, the specificity and complexity of the drift
terms are examined, as we turn to the simulation issues of the ECMM. The section ends with a brief
discussion on calibration.

4.1. Model Parametrization.

We introduce different model parametrization, depending on which class of forward CDS spread is
chosen.
We denote by (sTK ,TN (t))t≤TK

the forward CDS spread for period [TK , TN ] taken at time t. As done

in [15], it is interesting to introduce the survival probability QK,N
associated with the defaultable basis

point value for the period [TK , TN ]: BPV TK ,TN
. As sTK ,TN

(t) is martingale under QK,N
, we may write

its SDE as:
dsTK ,TN (t)
sTK ,TN (t)

= σK,N .dWQK,N

t (20)

The following definitions make explicit the different parametrizations:

Definition 4.1. Column Model
The k0-column model is represented through the forward CDS spreads:

(
sTk,Tk+k0

)
k=1,..,N

For k0 = 1, we get a model parametrization directly in terms of (Hk)k=1,..,N .

Definition 4.2. Diagonal Model
The TN -column model is represented through the forward CDS spreads: (sTk,TN

)k=1,..,N

4.2. Forward-Neutral Dynamics.

4.2.1. Linear Forward Default Intensity Process. Considering the change of probability given by
(15), we get the corresponding change in Brownian motions:

dWQk

t = dWQN

t − (−αD
k (t)− αk (t) + αN (t)

)
dt

= dWQN

t − (αN (t)− αk (t)) dt

Starting from (6) and applying the previous change of probability leads to:

dHk (t) =
Lk(t)σL

k

1 + δkLk(t)
[
(1 + δkHk(t))αD

k+1 − δkHk(t)σH
k

]
dt+Hk (t) σH

k (αk (t)− αN (t)) dt+Hk (t)σH
k dWQN

t

(21)
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4.2.2. Forward CDS Spread. Under the survival probability QK,N
, the forward CDS spread for

period [TK , TN ] follows the SDE given by:

dsTK ,TN
(t)

sTK ,TN
(t)

= σK,N .dWQK,N

t

Considering the change of probability given by (17), we get the corresponding change in Brownian motion
as:

dWQK,N

t = dWQN

t −
(

αN (t)−
∑N−1

k=K δkBk+1 (t) αk+1 (t)
BPVTK ,TN

(t)

)
dt

so that:
dsTK ,TN

(t)
sTK ,TN

(t)
= σK,N

(∑N−1
k=K δkBk+1 (t)αk+1 (t)

BPVTK ,TN
(t)

− αN (t)

)
dt + σK,NdWQN

t (22)

From both diffusion equations, we see that the fundamental variables involved in the drift term are the
processes (αk)k. As said previously, these processes follows a recurrence relationship allowing for an easy
computation. Then, the simulation may be done using standard log-Euler scheme, and building step by
step the drift term along this recurrence equation.

However, the drift recursion must be initialized, which an important issue in the simulation process.
This point is addressed in the next paragraph.

4.3. Drift Complexity and Simulation Restriction.

The drift complexity comes essentially from the initialization of the recurrence relationship for αk.
However, as αk = αD

k + αk, and as αk may be computed according to the recurrence relationship (1),
we will focus on the credit specific term αD

k .

We start with:

αD
k+1 (t) =

∫ Tk+1

0

(
σf (t, s)− σf (t, s)

)
ds

=
∫ Tκ(t)

0

(
σf (t, s)− σf (t, s)

)
ds +

∫ Tk+1

Tκ(t)

(
σf (t, s)− σf (t, s)

)
ds

Then, using (3), we get:

αD
k+1 (t) =

∫ Tκ(t)

0

(
σf (t, s)− σf (t, s)

)
ds +

k+1∑

j=κ(t)

δjHj (t) σH
j

1 + δjHj (t)
(23)

From this equation, we see that an additional term is needed when t is not one of the Tk:
∫ Tκ(t)

0

(
σf (t, s)− σf (t, s)

)
ds

However, it is not possible, from given diffusions on forward CDS spreads, to compute this term, as it
involves explicitly the volatility of the defaultable forward rates. This problem is very similar to the one
that motivates the introduction of a spot martingale measure for the Libor Market Model (see [14]).

This issue implies some numerical constraints for the simulation of the ECMM. Of course, one solution
may be to use an interpolation method for simulation dates t ∈ ]Tk, Tk+1[. But this may have a direct
impact on the distribution of the default time τ . Thus, this may be used with precaution.

We propose a different approach. The simulation ECMM is fundamentally linked to the specification
of a schedule (Tk)k=0,..,N . This schedule can be chosen without any specific constraints, apart from
those relative to the forward credit spreads defined as fundamental variables. Then, all the necessary
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information is reduced to default events on sub-period of time [TK , TK+1). This type of default infor-
mation clearly involves only simulations of the DAP for dates (Tk)k=0,..,N , for which the drift term is
known exactly. As a result, we see that the issue of drift initialization can be solved without using any
kind of approximation. The weakness of the approach may be a convergence problem for the SDE of
the chosen class of forward credit spreads, as the time step in the discretization scheme is imposed. We
will see at the end of the section, through a concrete numerical example, that, with the typical schedule
used in practice, the simulation is in fact very accurate.

4.4. Spread and Volatility Calibration.

The calibration procedure involves both the initial spread curve and the forward spread volatility term
structure. For the sake of simplicity, we take the example of a standard 3-months column model, i.e.
a model based on the 3-months forward CDS spreads: (Hk)k=0,...,N . All numerical examples will be
relative to this type of parametrization.

The difficulty of the calibration process depends evidently of the hypothesis chosen for the model.
More precisely, the hypothesis of independence between interest rates and credit spreads plays a crucial
role. In fact, it allows, as seen in previous sections, to have closed formulas to link fundamental model
variables, such as the Default Accumulator Process, or the linear default intensity, to the forward credit
spreads. As done by Schönbucher in [15], it is possible to extend these formulas to the case of correlated
markets using approximations of the associated convexity corrections. However, recent works from Brigo
and Alfonsi (see [4] for example), done within the CIR++ framework, seem to indicate that the effect of
interest rate correlation is negligible when pricing a standard credit default swap. We then assume, for
the calibration process, that the hypothesis of independence holds. Note that it is possible to proceed
to the same process as in [4] within the ECMM.

An important property of the ECMM is that it is auto-calibrated in spread, as the initial market spreads
represent simply the initial conditions of the fundamental SDE of the model. A simple recurrence
procedure can be used to built the initial term structure (Hk (0))k=0,...,N from market prices.

The calibration of volatility may require slightly more efforts, depending on the nature of volatility
to be calibrated. However, as shown in ([15]), there exists, in specific cases, closed formulas for Credit
Spread Options, allowing for fast calibration. Typically, a Black typed 3-months model is auto-calibrated
in volatility on the corresponding 3-months column. However, the calibration of a diagonal within this
framework may require a specific procedure.

An interesting feature of the ECMM with respect to calibration is that it is specified under a risk-
neutral probability, so that a large part of methods developed for Libor Market Models may be used
directly.

Example 4.3. We consider the case of a 1-column model, i.e. k0 = 1 with the notations of definition
(4.1.). We chose the issuer France Telecom and we compute its default probabilities with the ECMM for
maturities going from 3 months to 10 years.

The input parameters are the following:

• for all k, σH
k = σk,k+1 = 120%,

• number of Monte Carlo simulations: 100 000

and the initial spread curve as quoted by the market is:
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Figure 1: Spread curve for France-Telecom

Then, we bootstrap the market default probabilities from the quoted CDS spreads and we compare these
probabilities with those obtained in ECMM:

Figure 2: Comparison between ECMM default probabilities and market default probabilities

5. Pricing Credit Derivatives in an ECMM.

5.1. Default Payoffs.

We give in this section the present value of different default payoffs under the assumption of inde-
pendence between credit and default-free interest rates.

Proposition 5.1. Under the previous assumption, the present value of a payment of 1 at time Tk+1 if
a default occurs during the period ]Tk, Tk+1] is :

ek(0) = δkBk+1(0)Hk(0)

Proof. The independence hypothesis gives immediately:

Q[τ > Tk] = Dk(0)
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We thus have

ek(0) = EQ
[
β(Tk+1)1{Tk<τ≤Tk+1}

]

= EQ [β(Tk+1)]× EQ [(I(Tk)− I(Tk+1))]
= Bk+1(0)× (Q[τ > Tk]−Q[τ > Tk+1])
= Bk+1(0)× (Dk(0)−Dk+1(0))
= δkBk+1(0)Hk(0)

5.2. Pricing methodology.

We now turn to the pricing of various credit derivatives within the ECMM. We make a clear distinction
between two pricing methods. The first one only requires the simulation of the processes Hk and εk,
which then appear in the Monte-Carlo formula. In the second one these processes are also simulated but
only in order to get the default time information, and are no longer needed to compute the Monte-Carlo
price of the product.

5.2.1. ”Pricing Rule” Method : Application to Credit Spread Options. This method, as we
shall see later, is particularly well-suited for mono-issuer products. It is mainly based on formula (12)
from lemma 3.6. As an example, we consider the case of credit spread options (CSO) (other single-name
products, such as CMDS or RMDS may be priced in a similar way).

Description. A European call with maturity TK on a credit default swap (TK , TN ) gives the buyer the
right to enter at time TK in a credit default swap over the period ]TK , TN ] at a pre-determined (i.e.
agreed at time 0) spread s∗TK ,TN

(strike).

Payoff. At a date t (0 ≤ t ≤ TK ≤ TN ), the CDS with characteristics (TK , TN , s∗TK ,TN
) has from the

protection buyer point of view a value:

(1−R)
N−1∑

k=K

ek(t)− s∗TK ,TN

N−1∑

k=K

δkBk+1(t)

where ek(t) is the value at time t of a payment of 1 if a default occurs during the period [Tk, Tk+1].
The CDS forward spread (or forward default swap rate), denoted as sTK ,TN

(t), is defined as the level
of s∗TK ,TN

that makes the forward CDS fairly priced:

sTK ,TN
(t) = (1−R)

∑N−1
k=K ek(t)∑N−1

k=K δkBk+1(t)

= (1−R)
∑N−1

k=K δkBk+1(t)Hk(t)
BPVTK ,TN (t)

The time t - value of the forward CDS is thus:
[
sTK ,TN

(t)− s∗TK ,TN

]× BPVTK ,TN
(t).

In case of survival until TK , the option will be exercised only if its value at TK is positive. Consequently,
the payoff of a CSO can be written as:

I(TK)[sTK ,TN (TK)− s∗TK ,TN
]
+
BPVTK ,TN (TK).
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Pricing. The price at time t = 0 of a call with maturity TK on an underlying CDS starting at TK and
ending at TN and with strike s∗K,N can be expressed using the risk-neutral valuation formula:

C(0, TK , TN , s∗TK ,TN
) = EQ

[
β(TK)I(TK)BPVTK ,TN (TK)× [sTK ,TN (TK)− s∗TK ,TN

]
+

]
(24)

Using the DAP pricing rule, we can express this price as:

C(0, TK , TN , s∗K,N ) = EQ
[
β(TK)εK(TK)BPVTK ,TN

(TK)× [sTK ,TN
(TK)− s∗TK ,TN

]
+

]
(25)

where we have, using relation (13) with t = TK ,

BPVTK ,TN
(TK) =

1
εK(TK)

N−1∑

k=K

δkεk+1(TK)Bk+1(TK).

In equation (24), we need to know the default time of the issuer to compute the price of the CSO (through
the term I(TK)). On the contrary, equation (25) allows for a direct (i.e. without simulating explicitly
the default time) computation of the CSO price, which is more convenient from a computational point of
view: in particular, we do not need to simulate uniform variables to estimate the default time of the issuer.

Numerical Results. In order to test the robustness of our pricing method, we compute prices of CSO
for a given volatility parametrization of the processes Hk and we find the corresponding implicit Black
volatility.

More precisely, we work within a one-dimensional Black-type model with a given volatility term
structure. The model specification is a 3-month column. The purpose of the numerical test is to assert
the accuracy of the ECMM. In particular, it seems important to verify that the use of the DAP does
not introduce any simulation bias, so that the drift terms are well reproduced.

We have seen that:
dsTK ,TN (t)
sTK ,TN (t)

= σK,NdWQK,N

t

and the present value of the CSO is:

C(0, TK , TN , s∗TK ,TN
, σK,N ) = BPVTK ,TN (0)× EQK,N

[
[sTK ,TN (TK)− s∗TK ,TN

]
+

]

= BPVTK ,TN
(0)× [

sTK ,TN
(0)N(d1)− s∗TK ,TN

N(d2)
]

where d1 and d2 are given by

d1,2 =
ln

(
sTK ,TN

(0)

s∗TK ,TN

)
± 1

2 (σK,N )2TK

σK,N

√
TK

The implied Black volatility of a CSO is defined by:

Definition 5.2. Implied Black volatility
Let Cm(0, TK , TN,s

∗
TK ,TN

) be the market price of a Credit Spread Call with the same characteristics
as above. The implied Black volatility σ∗K,N is defined by:

C(0, TK , TN,s
∗
TK ,TN

, σ∗K,N ) = Cm(0, TK , TN,s
∗
TK ,TN

)

We then proceed as follows:

1. simulation (Monte Carlo) of the HK and εK(TK) using arbitrary volatilities σK,K+1 for the forward
spreads sTK ,TK+1 .
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2. computation of the CSO prices C(0, TK , TK+1,s
∗
TK ,TK+1

, σ∗K,K+1) where δK = 3 months for all K

(3-month column), for maturities varying from 3M to 10Y.

3. derivation of the implied volatilities σK,K+1 by inversion of the Black formula.

The following example shows that the ECMM reproduces very accurately the Black CSO prices even for
high volatilities and long maturities:

Example 5.3. The market data and model parameters are the same as in example 4.3.

Figure 3: France-Telecom implied volatilities in a 1-column model

5.2.2. ”Default Simulation” Method : Application to nth-to-default and CDO. This second
method is more general than the first one and should be used when the DAP pricing rule is no longer
applicable, especially in the case of multi-issuer products.

We first describe the principle of this pricing method and we apply it to the pricing of nth-to-default
and CDO.

Principle. We assume that we want to estimate the price of a product whose payoff depends on the
vector (τ1, τ2, . . . , τn), when τi stands for the default time of the ith issuer of a given basket (note that
this method applies to mono-issuer products when n = 1). Consequently, the price of such products can
be computed by a Monte-Carlo method when we proceed as follows for each trajectory:

1. simulation of the processes H
(i)
k and ε

(i)
k for all i (index for issuer i) and k (index of dates) under

the risk-neutral measure, given some correlation matrices Ωk between the H
(i)
k and a volatility

term-structure for each issuer;

2. determination of the default times τi of the issuers. If we still assume that an issuer can only
default on a discrete set of dates (Tk))k, then an approximation τ̂i of τi is given by formula (19):

τ̂i = inf
{

Tk, ε
(i)
k (Tk) < U

}

where U ∼ U([0, 1]) and is independent from the Brownian trajectory used for simulating the H
(i)
k .

3. computation of the payoff.
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Remark 5.4. We can simulate several default times realization for each issuer with only one trajectory
of the DAP by using several independent variables Uj ∼ U([0, 1]), which allows for a gain in computation
time.

Pricing of nth-to-default. Assume we have a basket made of N issuers and we want to estimate the
price of an nth-to-default contract on this basket. We denote as τ̃ the nth default time among the N
default times τ1, . . . , τN , I the index of the issuer which defaults at τ̃ (we assume that two issuers cannot
default at the same time) and RI the recovery rate associated with this issuer.

The payoff of the protection leg of nth-to-default with maturity T is given by:

(1−RI)1{τ̃≤T}

so that its value at time t = 0 is given as:

EQ
[
βτ̃ (1−RI)1{τ̃≤T}

]

if we assume that the protection payment is made at default.

Consequently, the computation of this price by Monte-Carlo is quite simple. For each Monte-Carlo
trajectory:

1. we simulate the default times τi for issuers i, 1 ≤ i ≤ N ;

2. we find the nth-to-default issuer and the corresponding default time and recovery;

3. we compute the payoff for this trajectory.

The computation of the premium leg is done in the same way since it depends only on the default time
τ̃ and on default-free interest rates.

Pricing of CDO. Similarly, the pricing of CDO is straightforward using this pricing methodology. We
first recall briefly the main characteristics of a CDO.

We consider a basket of N issuers with associated default times τi and recovery rates Ri. We denote
as Ni the nominal of the ith issuer in the CDO, and the corresponding loss is given as Li = (1−Ri)Ni.
The cumulated loss up to time T is then:

Λ(T ) :=
N∑

i=1

Li1{τi≤T}

We still assume that the defaults can only occur on a discrete set of dates (Tk)1≤k≤n. For a single-tranch
CDO with maturity T , spread s∗ and strikes K1 and K2 (K1 < K2), the payoffs are the following:

• floating leg: at each time T k := 1
2 (Tk−1 + Tk), the protection seller makes a payment equals:

CS(Λ(Tk),K1,K2)− CS(Λ(Tk−1),K1,K2)

where
CS(Λ(Tk),K1,K2) = [Λ(Tk)−K1]+ − [Λ(Tk)−K2]+

• fixed leg: at each time Tk, the protection buyer pays:

s∗δi−1

(
K2 −K1 − 1

2
[CS(Λ(Tk−1),K1,K2) + CS(Λ(Tk),K1,K2)]

)

The present value of each leg equals the risk-neutral expectation of the discounted payoff. Consequently,
it suffices to know the values of the quantities:

EQ [CS(Λ(Tk),K1,K2)] ,

which is easy once we know how to simulate the variables Λ(Tk).
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6. Conclusion.

With the introduction of a specific class of process, the Default Accumulator Process, we have achieved
to present a standard credit market model. This framework is flexible enough to allow for the pricing of
any type of credit-linked products. The focus made on simulation and pricing indicates that the ECMM
represents a tractable framework.

As the risk-neutral modelling allows for an easy adaptation of the classical methods commonly in
the case of Libor Market Models, the next step may be to define an appropriate diffusion process for the
underlying forward spread. Another crucial aspect may be to setup the correlation structure required
when pricing multi-name products. These issues are let for further studies.
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