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1. INTRODUCTION

The completeness for a market including default risk is classically achieved using the
extension of a default-free market. The line of argument consists in enlarging the initial
default-free and arbitrage-free market, which is also supposed to be complete, so that
default risk can be introduced. Then, the completeness of the resulting market is proved
for a given class of defaultable claims. Blanchet-Scalliet and Jeanblanc (2004) give a
construction of this type, and show that the defaultable market is complete as soon as
a defaultable zero-coupon bond is traded. Similar result can be found in Bielecki and
Rutkowski (2001), and in Bélanger et al. (2001). The construction is achieved either by
the use of a suitable representation theorem, as in [4], or by direct proof, as in [3]. The
main difficulties lie in the rebate parts, also called payments at hit, and in the practical
interpretation of the hedging portfolio. Particular focus on these aspects can be found in
[4]; related results can also be found in [2].

We study the case of a credit market and try to achieve the completeness, for a given
class of assets, using replicating strategy based on a set of defaultable basic assets and cash
account. In practice, the assets used for hedging strategies are the defaultable zero-coupon
bonds of different maturities. As the payment at hit is admissible in the credit market,
this class of asset can be considered as equivalent to the CDS, which is the practical
hedging instrument.

The general framework is a reduced form setup in which the information flow is mod-
elised through a brownian filtration F, which is augmented with the default time infor-
mation. The market is supposed to be frictionless and arbitrage-free.

The main result is that, for an information flow obtained from a d-dimensional brown-
ian motion, the hedging strategy involves exactly d + 1 defaultable zero-coupon bonds of
different maturities.

Under some technical conditions, the replicating portfolio can be built, being however
difficult to interprete. Specific examples are then provided, so that replicating strategies
associated to simple contracts can be analysed.

The paper is made as follows: in the first section, the basic notations and results for
a standard reduced form model are briefly recalled. In the second section, the standard
construction of a complete market including default risk is presented, in order to make
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explicit the usual tools and processes. The third and fourth sections develop the construc-
tion of completeness for a credit market. The first step is to achieve this for a defaultable
zero-coupon bond market. Then, by including payment at hits, the result is extended to
the general case of a CDS market. Examples of hedging strategies are provided for both
cases.

2. INTENSITY-BASED DEFAULT MODEL SETUP

In this section, the standard intensity-based approach is presented briefly. Main notations
and useful results are recalled, and will be used later in the different market constructions
given below.

Similar presentation and connected results can be found in [6], [5] and [7].

2.1. Basic Results and Notations. The default time 7 is supposed to be a non-
negative random variable on the probability space (2, G,P), satisfying P (7 = 0) = 0 and
P(r>t) >0 for all t € Ry. We define the right-continuous process H as:

Hy =1«
and the associated filtration H as:

He=0(Hy:u<t)

We assume the existence of an auxiliary filtration F such that G = F VvV H, and for
all t € Ry, Gy = F; V' Hy. In practice, F often corresponds to the modelisation of the
uncertainty relative to the default-free market, and is taken as a Brownian filtration,
satisfying the usual conditions. Note that as H; € Gy, 7 is a G-stopping time, but it is not
an F-stopping time.

The interest rate is supposed to be a non-negative process, and we denote 3, =

exp ( fot rsds) the savings account.
Hazard Process. We set Fy =P (7 < t|F;), for all t € Ry. Since, for any s > ¢,
E[Fs |F ] =EP(r <s|Fs)|F])=P(r <s|F)>P(r <t|F)
F' is a bounded non-negative sub-martingale. Then, F' can be be taken as RCLL.

Definition 1 [F-Hazard Process]. If F;, < 1 for all t € Ry, then the F-Hazard Process of
7 is defined as I'y = —In (1 — F). Equivalently, 1 — F; = exp (—T%).

It is clear from the definition of F' that I'g = 0.
The following classical result will be used intensively in what follows:

Lemma 2. Let Y be a G-measurable random variable and let t < s. Then
E[1ir50Y [Gt] = 1o B 1o exp (Ty) Y | 7]
and
E[1i<r<Y 1G] = 1ron B [Lpcrcsy exp (T0) Y |5
If'Y is Fs-measurable, then
E [1{T>9}Y|gt] = 1{T>t}E[eXp (Ft _FS)Y‘ft} (1)

A demonstration can be found in [3].
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Martingale Associated with the Hazard Process. We define the process L as:
Lt = 1{7‘>t} exp (Ft) = (]. — Ht) exp (Ft) (2)
Lemma 3. The process L is a G-martingale.

Lemma 4. IfT is a continuous increasing process, then the process My = Hy — T'yp, is a
G-martingale, and the process L satisfies:

L;=1 —/ L,_dM,
10,¢]

Proof. From (2), and using I’y = 0, it comes directly that Ly = 1. Applying integration
by part formula to (2):

Li=1+ /]0 ) exp (T'y) [(1 — Hy)dl, — dH,,] (3a)

tAT

AsTyp, = [, dly = f]o,t] (1 - H,)dl,, M; can be written as:

M, = / (dH, — (1 — H,)dT',)
10,t]
so that:
M, :/ exp (—T',) dL,
10,t]
[ |

Self-Financing Strategy. We recall the definition of a self-financing strategy (see

[8]):

Definition 5. A self-financing strategy is defined as a couple of adapted processes (77?) 0<t<T

and (1,)g<;<p~ such that:

o Jo [mR]dt+ f3" Ingl)” dt < +o0

o YB3, +n, St =138y + 1950 + fg n°dSO + fot N, - dS, a.s. Vt € [0,T%]

where [3, is the cash account and S the risky assets for a given market.
Typically, S represent risky assets in the default-free market, and are F-adapted.

2.2. Hypothesis.

General Hypothesis. The market of default-free and defaultable claims presents
the following properties:

e it is frictionless,

e it allows continuous trading over a finite period of time [0, T*], for a given maturity
T > 0.
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Specific Hypothesis.

e the uncertainty in the default-free market is modelised through the reference filtra-
tion IF, for the probability space (2, F,P),

e the default-free market is complete and arbitrage free. In particular there exists a
unique martingale measure P*, equivalent to P, on (2, Fr+).

Technical Conditions.

e the martingale invariance property holds under the equivalent martingale measures,
i.e.: any square integrable F-martingale under P* follows a G- martingale under P*,

e the F-martingales are continuous,

e the F-hazard process I of 7 is continuous.

3. MARKET COMPLETENESS: EXTENSION OF THE DEFAULT-FREE MARKET

In this section, we achieve market completeness for a market including default risk by
extending an initial default-free complete market. This is the usual approach, and it
allows to introduce the main arguments and needed technical tools. This will also allow for
comparison, in terms of hedging strategy, with the other construction presented hereafter.

We assume that at least one defaultable zero-coupon of maturity 7' < T™ is traded
in the market, and make the assumption of zero recovery in case of default. Then, we
examine the replication of defaultable claims with zero recovery. In particular, the issue
of payments at hit is not looked at in this part.

As the initial default-free market is complete, we have the following lemma:

Lemma 6. VX Fr--measurable, P*-integrable random variable, X admits a self-financing
replicating strategy.

This is simply the consequence of the hypothesis of completeness for the risk-free
market.
We then assume that the defaultable zero-coupon bond has zero recovery, so that its
price is given by:
P(t,T) = BEY [B7' 157} 1G:] (4)

where Q* is a probability measure, equivalent to [P, chosen by the market.

In fact, the market gives the price of the defaultable zero-coupon bond such that it
does not induce arbitrage opportunity. When defaultable zero-coupon of all maturities
T < T* are traded, it is easy to check that there exists a unique probability measure such
that (4) holds and such that the restriction of Q* to F is equal to P*.
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3.1. Dynamic of the defaultable zero-coupon bond price. We start by setting:
my =EY [B7  exp (—T'7) |7 ] =B [B7" exp (~I'r) | 7]

where this equality follows from the fact that Q* and P* coincides on Fp«. The process
my follows an F-martingale on P*, and on Q*.

Corollary 7. If the price of the defaultable zero-coupon bond is given by (4), then:
d? (t, T) = F (t, T) (Ttdt — th) + ﬁtLt_dmt

Proof.  Starting from (4), and using the fundamental equality (1), we have P (t,T) =
LiB,m;. Applying It6 lemma then leads to:

dﬁ (t, T) = ﬁtLt,dmt + 5tmtst + Ltmtdﬂt
P (t,T)dt + B,Ly—dmy + f,midLy

As st = —Lt,th,
dﬁ (t, T) = T{;P (t, T) dt + ﬁtLt_dmt — Bttht—th

|
We recall that the defaultable zero-coupon bond with zero recovery is included in the
set of tradable assets available in the market.

We also set: o
Z(t,T)="P(tT)5;"

the discounted price process of the defaultable zero-coupon bond.

3.2. Replicating Strategy. To show that the defaultable market is complete, we
proceed as follows:

e we postulate that the price of any defaultable security is given through the usual
risk-neutral expectation formula,

e we construct a self-financing replicating strategy, consisting in continuous trading
of default-free securities and in defaultable zero-coupon bonds,

e we conclude that the price is effectively given by the risk-neutral formula, and that
the market is complete.

We consider a general defaultable claim (X, 0, 7), that pays X at maturity T in case of
no default, and zero otherwise. The random variable X is supposed to be Fpr-measurable
and integrable with respect to Q*. We set S the price process of the defaultable claim
and §$ =SB, ! its discounted price process. As said previously, we postulate that:

SY =EY [87' X121y [G]
We know that:

Sp = 1rsey exp (Ty) EY [5;1X€XP (=T7) |F:] = Lym*
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where
m =B [B7' X exp (—I'r) | 7]
and (m{*), is an F-martingale under Q* (and also under P*).

This leads to the following representation theorem for SO

Lemma 8. The G-martingale SO admits the integral representation
. - tAT
SY =80+ / exp (T'y) dmy — / exp (Ty) m:X dM,,
0 10,tAT]

Proof. Starting from g,? = Lym;X, and applying the It6 product rule with the fact that

m;X is continuous leads to:

¢
SY = Sg+/ Ly_dm f/ exp (I'y) mXdM,
0 10,4]

We conclude with the property that M is stopped at T and Ly = 1,54 exp (I[';). W

Recall that the hypothesis of completeness for the default-free market implies that
Y7 = exp (—I'r) and Y5 = X exp (—I'7) admit self-financing replicating strategy involving
only default-free securities. Without loss of generality, we then consider these two assets
as primary securities in what follows. It is interesting to note that the discounted price
processes of Y; and Y; are respectively given by m; and m;X.

Proposition 9. Let us denote (X = mXm;'. On the set {T > t}, the replicating strat-

egy for the discounted price Sy is given by the portfolio:

0 X
r = G

¢ = —exp ()¢S
? = exp(I)

where the corresponding hedging instruments are: the discounted price process Z (t,T)
of the defaultable zero-coupon bond, and the discounted process of default-free claims
Y1 =exp(—I'r) and Y3 = X exp (—T'p).

In particular, the replicating strategy verifies gb%mt + qﬁfmtx =0.

On the set {T < t}, the strategy is identically equal to zero.

Proof.  As the discounted price processes of Y7 and Y5 are respectively given by my
and m;X. We have:

az (t, T) - Lt,dmt = mtst
= —Lt_mtht
= —eXp(—Ft) mtht

Combining this equation with the martingale representation theorem:
. . tAT
Sy = S +/ exp (Ty) dmiy — / exp (Ty) m:X dM,, (5)
0 10,tAT]

tAT
= SJ+ / CXdZ (u,T) — / exp (Cy) CX dmy, + / exp (L) dm¥
10,tAT] 10,tAT] 0
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which completes the proof. H

As 89 = (X Z (t,T) — exp (Ty) ¢Xmy 4 exp ([y) m¥, then (5) means that the chosen
strategy is self-financing.

4. DEFAULTABLE ZERO-COUPON BOND MARKET

We now turn to a different construction, and try to show that the market of defaultable
zero-coupon bonds is complete.

Two important additional hypotheses are then needed. The first one is technical, as it
specifies that the information flow is modelised through a d-dimensional Brownian motion.
The second one states that a continuum of defaultable zero-coupon bonds is traded in the
market.

The construction shares a lot of the technical tools with the preceding section, and the
line of arguments is also similar, in that it consists in building the hedging strategy, for
a given class of assets, using the liquid market products. However, the process and the
result are different in that the replicating strategy involves only defaultable claims and
cash account.

The completeness of the defaultable zero-coupon market is the first step in achieving
to show the completeness of the credit default swap market. This is due to the class
of admissible assets, and more specifically to the fact that the defaultable zero-coupon
market does not include payments at hit. As this represents the only major difference
between the two markets, it is let to a latter examination.

We start by defining a defaultable zero-coupon bond market, and the associated ad-
missible claims. Then, the replication strategy, based on a specified set of defaultable
zero-coupon, is build, so that the completeness is achieved under some technical condi-
tions. The section ends with an example of replicating strategy for which a financial
interpretation of the portfolio coefficients is made possible.

4.1. Model Set-Up. We keep the same notations as in the preceding section, and
recall the following useful result (see [8]):

Theorem 10. Let W = {Wt = (th, e Wtd) 0<t< —l—oo} be a d-dimensional Brown-
ian motion on (2, ;,P), and let {F;} be the augmentation under P of the filtration {F}V }
generated by W. Then, for any square-integrable martingale M = { My, F;0 < t < +oo}

with My = 0 a.s., there exists F, predictable processes Y9 = {th,ft;o <t< +oo}

such that: .
N 2
E/ (Yt(])) dt < +oo
0

for every 0 < T < +00, and
d t
M, = Z/ YD aw )
j=1"0
for every 0 <t < +00

We assume that the filtration F;, representing the uncertainty relative to the default-
free market, is a Brownian filtration generated by W = {Wt = (th, ey Wtd) ST 0<t < —l—oo}.
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We then introduce a set of d + 1 maturities (7%),_, , and corresponding default-
able zero-coupon bonds (F (t, Tk’))kzo..“ 4 The market is then constituted by the d + 1

defaultable zero-coupon bonds and the savings account.
The set of admissible claims is defined as follows:

Definition 11. The claims that are allowed in the market are of the form X 1,7y, with
X being Fr-measurable and P* integrable.

It represents the class of assets for which a replication strategy, in terms of defaultable
zero-coupon plus savings account, is to be built.

4.2. Dynamic of the defaultable zero-coupon bond price. We start by defining
the following processes, for Vi € {0, ...,d}:

mi =B [67 exp (-T'r,) |F] = BY [3, exp (-T'r,) | 7]

Using the representation theorem of Brownian, square integrable martingales, we have

the existence of processes ((;5?, e qzﬁf) such that:
0<t<T*

. SN2
o EQ fOT ((qﬁ?)) dt < 400 for every 4,7 in {0, ...,d}
o dmi = ¢LdW, for every i € {0, ...,d}
with each of the introduced processes being d-dimensional.

Corollary 12. If the price of the defaultable zero-coupon bond is given by (4), then for
all i € {0, ...,d}:

dP (t,T;) = P (t,T;) (redt — dM;) + B,Li_dm

We then set (Z(t,T;)),_, , the price processes of discounted defaultable zero-
coupon bonds:
dZ (t,T;) = L dm}— L;_midM, (6)
= L, dm! —exp (T;) midM,

4.3. Replicating Strategy. To show that the defaultable market is complete, we
proceed as follows:

e we postulate that the price of any defaultable security is given through the usual
risk-neutral expectation formula,

e we construct a self-financing replicating strategy, consisting in continuous trading
in defaultable zero-coupon bonds,

e we conclude that the price is effectively given by the risk-neutral formula, and that
the market is complete.



MARKET COMPLETENESS IN THE PRESENCE OF DEFAULT RISK 9

Construction of a set of basic processes. For the sake of simplicity, we introduce

a set of d basic assets (Ai)izl _, defined as follows:

dAl = exp (Ty) midZ (t,Tp) — exp (T'y) medZ (t,T;) (7)
for every i € {1,...,d}. Then:
dA} = L;_ exp (Ty) (mjdm) — m{dm})
The martingale representation theorem implies that:
dA] = Li_ exp (T'y) (mig, — m¢}) dW;
as defined in the previous section. By setting:
v = exp (Ty) (mi, — midy)

we get ' ‘
dAL = Ly_yidW,

Re-writting the preceding equation under a matricial form leads to:
dAy = Ly_¥dW;
where ¥ is defined by ¥; ; = 1, ; ().

Main Hypothesis. The main hypothesis that is necessary for the construction of
the replicating strategy concerns the matrix .

Condition 13. The matrix ¥ is invertible.

This condition is required only on the set {7 >t} since the replicating strategy is
identically zero on the set {7 < t}, as we have assumed zero recovery in case of default.
Note that this condition is satisfied in the case d = 1.

As in the previous section, we define:

SP =B [ X1(rsry |G1]
We know that:

5P = Lirsgy exp (T) BY (871X exp (Ur) [Fi] = Lomy©

where
mi* =BY [87' X exp (Pr) | 7]
and (mtX)0<t<T* is a F-martingale under Q* (and also under P*). Again, we use the
martingale representation theorem for Brownian, square integrable martingale, so that
there exists a process ( X ) verifying:
p on 0<t<T ymg

2
o BV foT ((‘15?()]) dt < +oo for every j € {1,...,d}
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o dmX = ¢ dW,
The martingale representation theorem on §? leads to:

Lemma 14. The G-martingale SO admits the integral representation

tAT
SY =80+ / exp (T'y) dm?y — / exp (Ty) mX dM,,
0 10,tAT]

Self-Financing Replicating Strategy. Using (5):

tAT
85+ / ¢XdZ (u,To) - / exp (T') (X dmy + / exp (T') dm’s
0

10,tAT] 10,tAT]
The decomposition of (m¢)y<;<z. and (mf{)0<t<T* leads to:
S=8+ [z~ [ L (cef +o,)am,
10,tAT] 10,¢]

As ¥ is invertible, we have:
Li—dW, = S 'dA,

which means that:

50 =50+ / CadZ (u,T) = / (¢Xol +0.) = 1dA,

10,tAT] 10,¢]

and, as A; is zero for 7 > ¢:

@=@+/

10,tAT]

CXdZ (u, Ty) — /

(cXoX +9,) = 71dA, (8)
10,tAT]

This equation means that §? is the price of a replicating strategy of the contingent
claim paying X1;-7} at maturity 7. The strategy involved is self-financing as the
portfolio coeflicients satisfy the integrability condition.

As the portfolio decomposition is invariant over any change of equivalent measure (this
is due to the martingale representation theorem), we may conclude that the martingale
measure Q* is unique and that the price of any admissible contingent claim is given
through the usual risk-neutral valuation formula.

4.4. Example: Hedging of CDS. In the previous section, the completeness of the
defaultable zero-coupon bond market was proved. Yet, the hedging strategy proposed
is difficult to interpret in terms of concrete contracts available currently in the credit
market..

In order to illustrate the construction of the hedging strategy, we take the practical
example of a CDS contract, for which we make explicit the hedging strategy, in terms of
defaultable bonds, and give a financial interpretation for the portfolio coefficients.

In the particular case of a defaultable bond market, we define the Credit Default Swap
contract in a slightly different way as the market do classically. The CDS is still a contract
in which the protection buyer pays a periodical premium 7 up to default, and receives
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1 — R, where R stands for the recovery, in case of default. The difference consists in the
payments timing. As the attainable claims are defined to be of the form X1, .7y for
some Fi-measurable random variable X, it is not possible to define payment occurring
exactly at default, i.e. at 7. We thus give two different definitions of the CDS contract.

Definition 15 [Market CDS Contract]. A Market CDS is defined as follows:

e the protection buyer receives 1— R in case of default, at time 7, and nothing otherwise

e the protection buyer pays a periodical premium m up to default, with an accrued
coupon for the truncated period for which the default has happened

Definition 16 [Discrete Tenor CDS Contract]. A Discrete Tenor CDS is defined using a
schedule (Ty),co..n for which:

e the protection buyer receives 1 — R in case of default, paid at time T, with
k (t) = inf {k/T}, > 7}, and nothing otherwise

e the protection buyer pays a periodical premium 7 up to default, with a plain coupon
paid on the period for which the default has happened

The CDS defined in this section will always be discrete tenor CDS contract. This
definition is easily extendable to forward contracts, as soon as the forward period [Tk, Tn]
is given. Thus, we take as given a schedule (T}) ke[0..N]» and define

€k (t) =E° /B;kvl+11{Tk<7'§Tk+l} |gf

We make the additional hypothesis of independence between interest rates and credit,
which allows to make explicit calculation:

Definition 17 [Independence between credit and interest rates|. The independence be-
tween credit and interest rates is defined for F-measurable processes. Let (Xt > 0)
represents a pure credit process and (Y, t > 0) a interest rate process, then X; and Y; are
independent.

Remark 18. A simple way to achieve independence between credit and interest rates in
the case of F; being a Brownian filtration, is to define credit-linked processes relatively to

the first K Brownian motions (Wtk)f;: % and to define other, non credit-linked processes
with regards to the other Brownian motions (Wt’“)fj;( e
Then, e becomes:
* 1 * —1
ex(t) = BEY B 1iromy 1G] - BE (87 1ominny G

_ P Th)5 5
- P(t,Tk) P(thk) P(thkJrl)
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for t < Ty. The definition of the discrete tenor forward CDS contract for period [Tk, Tn]
implies that the premium payments are directlty replicable in terms of defaultable zero-
coupons. Thus, only the redemption payment is examined in what follows. Using the
processes e, (t), we have the expression of the redemption payment as:

N-1
RPKJV (t) = €L (t)
k=K
N-1
= AP0 m) - Pt | )

K
for all ¢ < T}, and t < 7. This may be rewritten as:

N-1
RP(t)= 3 6. ()P (1, T0) (10)
k=K

with

Brg1(®) e 7.
%lf}f—[{

O () =1 S 1t K <k <N

—1lifk=N

The coefficients 0, clearly defines a replicating strategy, consisting of defaultable zero-
coupon bonds and cash account. This strategy can be given in a form very close to (8)
by differentiating (10).

However, expression (9) appears to be more interesting. Indeed, it shows that a
forward CDS redemption payment, for period [Tk, Tn], is simply the sum of the forward
CDS redemption payments for sub-periods [T, T+1]. Focusing then on the single period
[Tk, Tk+1], it comes:

RPp 41 (t) = )P(t,Tk) — P (t, Tj+1) (11)
Thus, the hedging portfolio consists in the defaultable zero-coupon of both maturities T}
and Ty1, with very specific coeflicients. In fact, the trading strategy associated consists
in selling the defaultable zero-coupon bond for the highest maturity, and in buying the
shortest in a quantity that corresponds exactly to the price at time ¢ of the forward default-
free zero-coupon bond. The composition of the hedging portfolio may be surprising at
first, but it becomes quite natural when considering the realization of the strategy.

We then consider a short position in a forward CDS redemption payment, for the

period [Ty, Tk+1]. Starting at ¢, the hedging portfolio is given by (%ﬁﬁf;), 71). The
portfolio is then dynamically modified so as to respect the hedging quantities at each date

t < s < Tj. Depending on the arrival of default, two different scenarii are possible:

o If 7 < T}: the forward CDS redemption payment has value zero, and so has the
hedging portfolio.

o If 7 > Tj: the position in the Ti-defaultable zero-coupon has came to maturity,
paying P (Ty,Ty+1). The resulting position at T} is as follows: short position in
CDS redemption payment and short position in the T} 1-defaultable zero-coupon,
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i.e. a position that will pay 1 at Tyy1, whatever default scenario may occur. This
corresponds to a short position in the default-free zero-coupon, that can be unwinded
using the cash account at T}, since it has a value precisely of P (Tj, Tk+1)-

5. COMPLETENESS OF A CDS MARKET

Having achieved the completeness of a defaultable zero-coupon bond market, we now turn
to the credit default swap market. As said previously, the CDS market can be seen as
a defaultable zero-coupon bond market containing payments at hit. This is due to the
decomposition of the CDS price in terms of defaultable zero-coupon and payment in case
of default.

In this section, we achieve to include the payment at hit in the defaultable zero-coupon
bond market, so that the standard CDS contract becomes part of the admissible claims.

5.1. Hedging a Payment at Hit. In this section, additional claims are added in the
market, for which a replication strategy is needed:

Definition 19. The claims that are added in the market are of the form X;1(.<7y, with
X a bounded, F-predictable process.

In order to include this type of assets in the set of admissible claims, we present
a construction of a replicating strategy, inspired by [4]. The replicating strategy will
consists in a portfolio of defaultable zero-coupon and savings account.

To achieve this, we recall a result taken from [4].

Proposition 20. Assuming the martingale invariance property holds, and the F-hazard
process of T is continuous, let My = H; — I'1a-, and u be an F-predictable process such
that u, is integrable, and H; = E[u,|G;]. Then,

tAT
Ut:mg—F/ eXp(Fs)dmg—l—/ (us — Us—) dM
0 10,tAT]

where m" is the F-martingale

+oo
my =E {/ ugdF,
0

We then introduce the discounted price of the payment at hit as:

P, =EY [B;' X 1<y [Gt]

7]

Apllying the previous result to the process u; = ﬂ[lth{tST} leads to:

tAT
B =m¥X +/ exp (T's) dmX +/ (XS - PS_> dM,
0 10,tAT]
where m" is the F-martingale
mg( =E

T
/ By X dF,| Fy
0
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Using the SDE for the last discounted defaultable zero-coupon:
dZ (t,Ty) = Li_dm¢ — exp (Ty) m&d M,
and keeping the same notations as for the defaultable zero-coupon market, we get:

(X.~P) dZ (s, Ty)

tAT
B =m{ +/ CfZ‘ldAs — -
' 0 0 10,tAT] €XP (T's) mg

for some process Cf to be specified later on. This equation gives the decomposition of
the price process of the payment at hit in terms of defaultable zero-coupon bonds, and
allows to conclude on the hedging strategy for a payment at hit.

Proposition 21. If P, is the value of the payment at hit, then the hedging strategy is
given by a portfolio of defaultable zero-coupon bonds and cash account made of:

1. a portfolio of defaultable zero-coupon bonds given by QX YA,

2. an additional position in defaultable zero-coupon of maturity T, given by %
sAd

3. a cash amount a; such that
(ST A+ By = Xy
where g“f{ is given by:
G = + ot
with:

° ¢>f{ =exp (I'y) wf(, where th is defined through the application of the martin-
gale representation theorem (ref) to mX = E {foT 5;1XSdFS ft}

° gbf = %wg, where 1p;‘ is defined through the application of the mar-
tingale representation theorem (ref) to mg

5.2. Example: Hedging of CDS. In this section, we take once again the case of a

Credit Default Swap, in order to give indications about the hedging strategy for a standard

market contract. As described in the previous section, the market CDS contract definition

involves a payment at default, so that the hedging portfolio will be slightly different than

in the case of a discrete tenor CDS.

We proceed as follows: assuming independence between credit and interest rates, we
give an expression of the market CDS contract using zero-coupon bonds and defaultable
zero-coupon bonds. As for the discrete tenor case, we consider only the redemption
payment, which is given as:

RPp(t) = BEY 187 Lcr<ry 1G]

T
= 1psyByoxp (Ty)E / B8R, |
t
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Then, applying an integration by part formula, we get:

By'dF, = B;'F, — Fdp;!
= ﬁ;lFt + TtB;lFtdt

and using the independence hypothesis,

RPr (t) = 1{r>t}ﬂt exp (Ft) {EQ* [[ﬁglFs]tT \ft} + EY

T
/rsﬁlesdsm”
t
T
/ rsﬂglFSds |.7:t]}
t

= 1{.,.>t}P (t, T) exp (Ft) - P (t, T) + 1{.,->t} — 1{~r>t} exp (Ft)

T
/ Tsﬂsl(l_Fs)ds|ft]
t

= 1{T>t}/8t exp (Ft) {EQ* [5%1FT - B;IFt |]:t] + EY

~1r>i B exp (Iy) EY

T
1> Brexp (Iy) EQ / Tsﬁglds | F
t

T
= 1y — P(6T) — 1gagy Brexp (Ty) E2 V rsﬁs_l(lFS)dsU}]

¢
The price at time ¢ of the defaultable zero-coupon bond of maturity s is given by:
P(t,s) =1 B exp (D) BY (8,1 (1 - Fy) | 7]

We recall that:
oP (t,T)

or

0

= o= {BY 857" 17}

= EY [r.8,8," 7]

:mﬂa@mv

T=s T=s T=s

Denoting by A; = 1,543, exp (I't) EY [ftT reBt (1 —F,)ds \ft}, and using the inde-
pendence property, we get:
T * *
A, = / L~y Brexp (T4 EY [r8, |7 EY (1 - Fy |F]ds
t
T 1 * * *
= / LsnBiexp () P(ts) B 8,8, |F|EY [r8; " | 7] EY [1 - F,|F]ds
t
T
= / 1,08, exp (T P (t,s) "B [r8, | F)EY [8,6, (1~ Fy) |F ] ds
t
so that finally

T _1 OP(t,T) —
_ 1 )
Ay = /t P(t,s) T |, P(t,s)ds

The redemption payment of a market CDS contract reads:
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T
RPr (1) = 1oty — P(1,T) —/ Pi,s PED By gas (2
t or T=s
This expression does not gives in itself a replication strategy, but it allows to extend
the result presented for the discrete tenor case, in so far as, under the hypothesis of
deterministic interest rates, the market CDS can be seen as a limit case the discrete tenor.
Indeed, (12) becomes the continuous version of (11), when maxy, {|Tx+1 — Tk|} — 0.

6. CONCLUSION

We have shown that a market consisting of defaultable zero-coupon bonds is complete,
and that, in the case of an information flow modelled through a d-dimensional Brownian
motion, the hedging strategy involves d 4+ 1 defaultable zero-coupon bonds and the cash
account. The hedging strategy is still difficult to interpret as a concrete trading strat-
egy, apart from some specific cases. It remains to study the hedging in a credit market
composed of several issuers, with correlated default. This is still an open question.
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